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ABSTRACT
We study the evolution of a magnetic arcade that is anchored to an accretion disk and is sheared by

the di†erential rotation of a Keplerian disk. By including an extremely low external plasma pressure at
large distances, we obtain a sequence of axisymmetric magnetostatic equilibria and show that there is a
fundamental di†erence between Ðeld lines that are a†ected by the plasma pressure and those that are not
(i.e., force free). Force-free Ðelds, while being twisted by the di†erential rotation of the disk, expand
outward at an angle of D60¡ away from the rotation axis, consistent with the previous studies. These
force-free Ðeld lines, however, are enclosed by the outer Ðeld lines, which originate from small disk radii
and come back to the disk at large radii. These outer Ðelds experience most of the twist, and they are
also a†ected most by the external plasma pressure. At large cylindrical radial distances, magnetic pres-
sure and plasma pressure are comparable so that any further radial expansion of magnetic Ðelds is pre-
vented or slowed down greatly by this pressure. This hindrance to cylindrical radial expansion causes
most of the added twist to be distributed on the ascending portion of the Ðeld lines, close to the rotation
axis. Since these Ðeld lines are twisted most, the increasing ratio of the toroidal component to theBÕpoloidal component eventually results in the collimation of magnetic energy and Ñux around theB

R,zrotation axis. We discuss the difficulty with adding a large number of twists within the limitations of the
magnetostatic approximation.
Subject headings : accretion, accretion disks È magnetic Ðelds È MHD È plasmas

1. INTRODUCTION

The process of forming collimated jets/outÑows due to
disk accretion onto central compact objects is thought to
depend on how magnetic Ðelds behave when they are
swirled around by the accretion disk. The progress of
understanding this process has, however, been hindered by
the signiÐcant lack of knowledge on the global magnetic
Ðeld conÐguration in/near the accretion disk (see Okamoto
1999 for detailed critiques on many MHD models ; see also
Blandford 2000 for a recent review). An ordered magnetic
Ðeld is widely thought to have an essential role in jet forma-
tion from a rotating accretion disk. Two main regimes have
been considered in theoretical models (see Lovelace, Ustyu-
gova, & Koldoba 1999 for a review) : the hydromagnetic
regime, where the energy and angular momentum are
carried by both the electromagnetic Ðeld and the kinetic
Ñux of matter, and the Poynting Ñux regime, where the
energy and angular momentum outÑow from the disk are
carried predominantly by the electromagnetic Ðeld. Major
progress has been made recently in the hydromagnetic
regime of jet formation, originally proposed by Blandford &
Payne (1982). Dynamic MHD simulations of the near-jet
region have been carried out by several groups (Bell 1994 ;
Ustyugova et al. 1995, 1999 ; Koldoba et al. 1995 ;
Romanova et al. 1997, 1998 ; Meier et al. 1997 ; Ouyed &
Pudritz 1997 ; Krasnopolsky, Li, & Blandford 1999). The
simulation study of Ustyugova et al. (1999) in the hydro-
magnetic wind regime indicates that the outÑows are accel-
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erated to superfast magnetosonic, superescape speeds close
to their region of origin (D80 times the inner radius of the
disk), whereas the collimation occurs at much larger dis-
tances. Poynting Ñux models for the origin of jets were
proposed by Lovelace (1976) and Blandford (1976) and
developed further by Lovelace, Wang, & Sulkanen (1987),
Lynden-Bell (1996), and Colgate & Li (1999). In these
models the rotation of a Keplerian accretion disk twists a
poloidal Ðeld threading the disk, and this results in outÑows
from the disk that carry angular momentum (in the twist of
the Ðeld) and energy (in the Poynting Ñux) away from the
disk, thereby facilitating the accretion of matter. Most
recent computer simulations using the full axisymmetric
MHD equations have been in the hydromagnetic regime.
However, recent simulation studies have found jet outÑows
in the Poynting Ñux regime (Romanova et al. 1998 ; Ustyu-
gova et al. 2000).

One class of models deals with a simpliÐed limit, where
magnetostatic and force-free conditions are assumed. This
kind of problem is very clearly stated in the introduction of
Lynden-Bell & Boily (1994, hereafter LB94 ; see also
Lynden-Bell 1996) : A Ðeld rooted in a heavy conductor on
z\ 0 (i.e., the rotating disk) pervades a perfectly conducting
force-free medium in the region z[ 0. On the disk surface
(z\ 0), the Ðeld passes upward from the region 0 ¹ R¹R

oand returns downward in the region TheR
o
\R¹Rmax.disk is now rotated about its axis according to the

Keplerian motion, )(R) P R~3@2. The problem is to deter-
mine the magnetostatic Ðeld conÐguration when the disk
has gone through a speciÐc number of turns. They found
that Ðelds, instead of collimating along the rotation axis,
expand along an angle of h B 60¡ away from the rotation
axis.

The behavior of twisted magnetic Ðeld lines that are
anchored in a perfectly conducting medium was originally
considered in the solar corona context (see, e.g., Aly 1984,
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1991, 1995 ; Mikic, Barnes, & Schnack 1988 ; Finn & Chen
1990 ; Sturrock, Antiochos, & Roumeliotis 1995). The direct
application of those studies to accretion disks has been
fairly recent (e.g., Appl & Camenzind 1993 ; &Ko� nigl
Ruden 1993 ; LB94 ; Lynden-Bell 1996 ; Bardou & Hey-
vaerts 1996 ; Goodson, & Winglee 1999 ; Uzdensky,Bo� hm,

& Litwin 2001). The important role of an externalKo� nigl,
plasma pressure was Ðrst emphasized by Lynden-Bell
(1996), who argued that Ðeld lines cannot simply expand to
inÐnity as shown by LB94 because the required PdV work
becomes too large. He then constructed a simpliÐed cylin-
drical model where a magnetic helix/jet is bounded at a
large radius by external plasma pressure. But the question
left open is whether the plasma pressure can indeed play a
conÐning role in a self-consistent global treatment of the
twisting and expansion of magnetic Ðelds driven by the disk
shear rotation.

In this study, we obtain self-consistent global solutions of
axisymmetric magnetostatic conÐgurations by strictly
enforcing the Keplerian shear condition on the Ñux surfaces
that are anchored in the disk. The assumptions we use are
explained in detail in ° 2. We formulate our problem in ° 3,
along with the relevant equations and methods to solve
them. Results are given in ° 4, and Ðnal conclusions and
discussions in ° 5.

2. BASIC ASSUMPTIONS

The equation of motion in the nonrelativistic ideal mag-
netohydrodynamics (MHD) limit is simply

o
d¿
dt

\ 1
c

J Â B ] oü [+P , (1)

where o is the plasma density, the Ñow velocity, J the¿
current density, the gravitational acceleration, and P theü
plasma pressure.

We restrict our attention to axisymmetric magnetostatic
conÐgurations. The underlying assumption is that the speed
of the Ðeld line twisting by the disk is slow so that the
system quickly reaches an equilibrium. We can then treat
the evolution of Ðeld conÐgurations as sequences of magne-
tostatic equilibria. We make the further assumption that the
magnetic Ðeld plays the dominant role, with plasma Ñow ¿
and gravity much less important. Then, the steady stateoü
equation is

J Â B \ c+P . (2)

The main astrophysical motivation for keeping this pres-
sure term is that at sufficiently large distances away from
the disk, the plasma pressure will be comparable to the
magnetic pressure, thus becoming dynamically important.
When +P] 0, we have the so-called force-free (FF) limit.

We now discuss the physical conditions where these
assumptions apply. There are at least two relevant speeds in
this problem, which are related to two physical aspects. The
Ðrst one is the velocity of Keplerian disk rotation, whichvK,
describes the rate of Ðeld line footpoint movement. The
second is the relaxation speed, for magnetic Ðelds tovX,
reach equilibrium, which is usually achieved by MHD
waves going back and forth in the system. This is essentially
the speed and is ultimately limited by the speed ofAlfve� n vAlight c. Together with these speeds, there are two relevant
timescales : the disk rotation period and theTK \ 2nRmin/vKrelaxation time where is the inner diskTX \ L max/vX, Rmin

radius and is the system dimension. In order to ensureL maxthe steady state condition on the timescale of oneTK,
requires that L max > (vX/vK)Rmin.In order to simulate a system that is much larger than

these considerations indicate that in a black hole acc-Rmin,retion disk system, Ðeld lines close to the black holes are
likely twisted too rapidly to be treated by the magnetostatic
equations. In other words, the dynamic pressure from the
inertial term in equation (1) is likely to be veryod¿/dt
important during the expansion ; thus, the conclusions from
this study might not apply in this limit. On the other hand,
for Ðeld lines further away from the black hole and/or for
accretion disks around systems such as young stars, the
rotation speed is small enough that the magnetostatic limit
could still apply.

Another relevant process is the footpoint drift across the
disk. Magnetic Ðeld threading the disk tends to be advected
inward with the accretion Ñow, but at the same time it may
di†use through the disk owing to a Ðnite magnetic di†usi-
vity of the disk. The outward drift of the magnetic Ðeld ing

mthe disk occurs at speed where h is theU
r
\ (g

m
/h) tan h,

half-thickness of the disk, and a smaller,tan h 4 (B
r
/B

z
)
z/0,second-order di†usion term has been omitted(g

m
L2B

z
/Lr2)

(Lovelace, Newman, & Romanovna 1997). For cases where
the di†usivity is of the order of the viscosity and where the
viscosity is given by the Shakura & Sunyaev (1973) pre-
scription (with a \ 1 and the midplane soundl\ ac

s
h c

sspeed), the di†usive drift speed is This isU
r
D ac

s
tan h.

larger than the radial accretion speed due tov
r
D [ac

s
(h/R)

viscosity alone. But what is important here is that the Ðeld
drift and the accretion speeds are much less than the
Keplerian velocity of the disk for For this reasonc

s
> VK.

the Ðelds can be treated as frozen into the disk. This point
was made by Ustyugova et al. (2000) and also discussed by
Uzdensky et al. (2001).

3. BASIC EQUATIONS

We have formulated the problem discussed in ° 1 in both
cylindrical (R, /, z) and spherical (r, h, /) coordinates.
Axisymmetry is assumed in both cases. The magnetic Ðeld
can be written as

B \ B
p
] BÕ/\ +(] +/] BÕ/ , (3)

where the poloidal component is in the MR, zN or Mr, hNB
pplane, 2n( is the total poloidal Ñux through the disk, and

contours of ( label the poloidal Ðeld lines. The poloidal
magnetic Ðelds are

B
R

\ [ 1
R

L(
Lz

,

B
z
\ 1

R
L(
LR

, (4)

for cylindrical coordinates and

B
r
\ 1

r2 sin h
L(
Lh

,

Bh \ [ 1
r sin h

L(
Lr

, (5)

for spherical coordinates. The current density

4n
c

J \ [*|(+/] +(rBÕ) ] +/ , (6)
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where the operator is for cylindrical coordinates*|

*
c
|( \ L2

LR2[ 1
R

L
LR

] L2
Lz2 (7)

and for spherical coordinates

*
s
|( \ L2

Lr2] 1
r2

L2
Lh2[ 1

r2 tan h
L
Lh

. (8)

Equation (2) implies that

B Æ $P\ 0 F P\ P(() . (9)

In other words, the gas pressure is constant along Ðeld lines.
In cylindrical coordinates, equation (2) can be written as the
well-known Grad-Shafranov equation,

*
c
|(+(] RBÕ +(RBÕ)\ [4nR2 dP

d(
+( , (10)

from which we deÐne and getRBÕ\H(()

*
c
|( ] d(H2/2)/d( ] 4nR2dP/d( \ 0 . (11)

Similarly, in spherical coordinates, we deÐne r sin hBÕ\
andH(()

*
s
|( ] d(H2/2)/d( ] 4n(r sin h)2dP/d( \ 0 . (12)

In our spherical calculations, we actually use m \ ln r to
concentrate the uniform grid in m for better resolution at
small r. Equation (12) then becomes

*sl|( ] r2d[H2/2]/d( ] 4n(r4 sin2 h)dP/d( \ 0 , (13)

where

*sl| ( \ L2
Lm2[ L

Lm
] L2

Lh2[ 1
tan h

L
Lh

. (14)

The quantity is (2/c) times the totalH(()\ RBÕ(R, z)
current Ñowing through a circular area of radius R (with
normal z) labeled by ((R, z)\ constant. The development
of the toroidal Ðeld component from an initial purely poloi-
dal Ðeld comes from the di†erential rotation of the disk
onto which footpoints of the same Ðeld lines are anchored.

3.1. Boundary Conditions
Since there is no direct observational information on how

magnetic Ðelds are distributed on the surface of an accretion
disk, we have made the following assumptions. If the mag-
netic Ðeld on the disk is initially generated via an accretion
disk dynamo that makes a quadrupole- or dipole-like Ðeld,
magnetic Ðelds will emerge out of the disk at smaller radii
and go back to the disk at large radii. We use to rep-Roresent the O point of the Ðeld in the disk, i.e., the radius
where on the disk. Furthermore, in a fully self-B

z
\ 0

consistent treatment including the back-reaction on the
disk, also marks a separation location inside whichRoangular momentum is lost and transmitted to the outer part
of the disk by Ðeld line tension.

We study the expansion of this cylindrical magnetic
arcade anchored on the disk. We further assume that the
overall strength of decreases as a function of radius,oB

z
o

except near the O point where This is roughlyoB
z
o\ 0.

consistent with the fact that the thermal pressure of the disk
(which anchors the Ðelds) decreases radially as well. SpeciÐ-
cally, we have chosen a computational domain that is a box
with and in the cylindrical case0 \R\Rmax 0 \ z\ zmax

and/or a sphere with in the spherical case.rmin\ r \ rmaxThe outer boundary is assumed to be perfectly conducting
(( \ 0). At z\ 0 (along the disk), we assume that the disk is
perfectly conducting as well. An initial poloidal Ðeld dis-
tribution is speciÐed ((R, 0) [or ((r, n/2)] as

((R,0)P
4
5
6

0
0

R2 for R\ R
c
,

Ra for R
c
\ R\ Ro ,

Routa [ Ra for Ro \ R\ Rout ,
(15)

where we have joined these parts smoothly. Figure 1 shows
the distribution of ( and on the disk surface. TheoB

z
o

poloidal Ñux is distributed between andRminB 10~5
A core radius is used, inside ofRout B 0.02. R

c
B 10Rminwhich the component approaches a constant. The indexB

za is chosen to be 5/4 so that is decreasing as Ra~2,B
zreversing its sign at the O point and continuingRo B 0.01,

to decrease until Both ((R,0) and remain zeroRout. oB
z
o

between and These choices for andRout Rmax \ 1. Ro Routensure that the initial magnetic Ðeld is distributed far inside
the outer boundary We have tried many di†erentRmax.initial Ðeld conÐgurations and found that our main conclu-
sions do not depend on these particular choices of param-
eters, as long as magnetic Ðelds stay away from the outer
boundary or The dependence on ((R, z\ 0)Rmax rmax.near the O point is very weak since those Ðeld lines are
hardly twisted at all.

3.2. External Plasma Pressure
The physical picture we have in mind for accounting for

the pressure of an external plasma is that magnetic Ðeld
close to the disk is force-free with little inÑuence from the
plasma pressure. At large distances, however, the magnetic
pressure decreases sufficiently so that plasma pressure
becomes important. In other words, the magnetic Ðelds are
bounded above and on the sides by an ambient medium

FIG. 1.ÈDistribution of poloidal Ðelds on the disk between 0¹R¹

The ( value (top panel) increases from 0 to 1 at the O pointRout. Ro\ 0.01
and decreases back to 0 at Its corresponding (middleRout \ 0.02. oB

z
(R,0) o

panel) becomes zero as well as reverses its sign at The twist proÐleRo.(PR~3@2) is shown in the bottom panel. It is nearly Keplerian over a large
range of radii but is Ñattened for R] 0 and is approaching zero near the O
point because the separation between the footpoints of the arcade is
becoming zero.
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that is perfectly conducting and mostly devoid of any mag-
netic Ñux. This forms a conducting, in general, ““ deformed
box ÏÏ inside of which the magnetic Ðeld dominates and the
gas pressure is very small.

To model the external plasma pressure, we adopt the
dependence

P(()\ P
c

exp [[((/(
c
)2] (16)

so that

dP/d( \ [(2P
c
/(

c
2)( exp [[((/(

c
)2] , (17)

where and are the input parameters. For most of theP
c

(
cresults presented here, we have chosen andP

c
\ 0.1 (

c
\

10~3. The physical meaning of is that its magnitude givesP
can estimate of the overall importance of plasma pressure.

Using the example given in equation (15), the maximum B
znear is D6 ] 105 (see Fig. 1), so the ratio of theRminmaximum magnetic pressure to the maximum gas pressure

in the computational domain is D1011. The quantity (
cgives the fraction of poloidal Ñux that is a†ected by the

plasma pressure.
The prescribed plasma pressure (eq. [16]) is kept Ðxed at

all times throughout the sequence of equilibria. This is
because the prescribed pressure here is meant to mimic a
constant external pressure boundary (such as pressure from
interstellar or intergalactic medium) that is reacting to the
““ push ÏÏ by magnetic Ðelds. This interpretation is precise in
the limit of We have used a very small but Ðnite(

c
] 0. (

cfor the convenience of modeling both the Lorentz force and
pressure gradient terms simultaneously, rather than having
to specify the pressure gradient term through a boundary
condition, especially when the shape of this boundary is
determined dynamically by the push from the magnetic
Ðelds and is not known a priori. The pressure in the Ñux
tubes with however, might change owing to the( [(

c
,

Ñux volume expansion. If the entropy of each Ñux tube is
conserved, then pressure has to decrease with expanding
volume. On the other hand, if there is enough heat Ñux
between the disk and the Ñux tubes, then the entropy of a
Ñux tube is not conserved (Finn & Chen 1990). Either way,
since the pressure in the Ñux tubes with is already( [(

cset to be exponentially small (eq. [16]) initially, any further
decrease in pressure will not alter our conclusions.

We make two more observations about the plasma pres-
sure term. First, equation (16) gives that when ( ] 0 (i.e., at
the boundary), the pressure and its gradient dP/P] P

cd( ] 0. Both features are physically plausible. Second, it is
interesting to note that the pressure e†ect enters equations
(11) and (13) with a geometric factor R2 or (r sin h)2. This
factor actually comes from the J Â B term. It is only under
the equilibrium condition that it can be ““moved ÏÏ to be a
multiplier of the pressure term. Consequently, the pressure
tends to prevent expansion away from the rotation axis but
has relatively little constraining e†ect along the rotation
axis.

3.3. Input Keplerian Field L ine Twist
From the distribution of ((R, 0) and the Keplerian rota-

tion )(R)P R~3@2, we can deÐne the required twist on each
Ðeld line *'((). The twist of a given Ðeld line going from an
inner footpoint at to an outer footpoint at is pro-R1 R2portional to the di†erential rotation of the disk. Using a
cylindrical coordinate, for a given Ðeld line, we have

where is the poloi-Rd//BÕ\ dl
p
/B

p
, dl

p
4 (dR2] dz2)1@2

dal arc length along the Ðeld line and B
p
4 (B

R
2 ]B

z
2)1@2.

Then the total twist of a Ðeld line is

*'(() \
P
1

2
dl

p
BÕ
RB

p
\ H(()

P
1

2 dl
p

R2B
p

. (18)

We denote the quantity The Ðeld lineV @(() \ /12 dl
p
/R2B

p
.

twist after a time t is

*'(() \ )o t
CARo

R1

B3@2[
ARo
R2

B3@2D
,

\ ()o t)F(() , (19)

where is the Keplerian angular frequency)o4 (GM/Ro3)1@2at of an object of mass M and F is dimensionless. TheRorotation proÐle is assumed to begin deviating from
Keplerian and to approach a constant when (Fig. 1,R¹R

cbottom panel). There exists a region, however, between
( \ 0 and where the twist decreases as ((min\((Rmin)decreases (i.e., getting closer to the z-axis and the surround-
ing wall). These Ðeld lines are not explicitly followed in our
calculations. But since H(() ] 0 as ( ] 0, the twist *'(()
approaches zero as well (eq. [18]).

3.4. Method of Solution
We solve equations (11) and (13) following the approach

given in Finn & Chen (1990), which employs several levels
of iterations. For the very Ðrst step, we will use a trial H((),
then we solve equation (11) or (13) using the successive
overrelaxation (SOR) method (see, e.g., Potter 1973) for
(k(r, h) ] (k`1(r, h). From (k`1(r, h), we integrate along
the Ðeld lines to obtain V @((). We typically trace D200 Ðeld
lines with 3] 10~5¹ ( ¹ 1 for calculating the poloidal
current proÐle H((). Using equation (18), we update H(()
using the input *'((). This procedure is then repeated. The
advantage of the simple SOR solver is that the nonlinear
source terms d(H2)/d( and dP/d( can easily be included in
the iterations so that convergence can be achieved fairly
quickly (with a typical relative residue less than 10~6).

In summary, we compute global magnetostatic solutions
of ((r, h) using the Grad-Shafranov equation in axisym-
metry by requiring that the twist on each Ðeld line follows a
speciÐed function *'((), derived based on the Keplerian
disk rotation.

4. RESULTS

We have made many runs with di†erent choices of the
initial Ðeld conÐguration on the disk ((R, 0), the twist
proÐle *'((), and the pressure proÐle P((). Runs are made
in both cylindrical and spherical coordinates. We present
most of our results using the following parameters : A ln rÈ
spherical coordinate system is used, with rmin\ 10~5,

The radial and h angle grids are 367 ] 51. Thermax \ 1.
initial Ðeld conÐguration is the same as shown in Figure 1,
where and The smallest ( value ofRo\ 0.01 Rout\ 0.02.
the Ðeld lines we track is The(min\((Rmin) \ 3 ] 10~5.
plasma pressure parameters are andP

c
\ 0.1 (

c
\ 0.001.

The maximum on the disk is B6 ] 105, which impliesoB
z
o

a ratio of D1011 between the maximum magnetic pressure
and the plasma pressure. (Even larger pressure ratios can be
achieved with relative ease.) To indicate the progressively
increasing twist added to the Ðeld lines, we use the notation
time t (eq. [19]) in units of revolutions of the innermost Ñux
line around the z-axis, i.e.,((min) *'max \*'((min)\ 2nt.
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Figure 2 describes our overall physical picture with two
di†erent physical regimes. For the plasma0 ¹ ( ¹(

c
,

pressure is dominant. This region is labeled as PP. For
the magnetic pressure dominates, and the(

c
¹ ( ¹ 1,

region is force-free (labeled as FF). So we have e†ectively
made two ideal MHD Ñuids, one (PP) has a plasma b ] O
and the other (FF) has b \ 0. The key question we are
addressing is ““ How does the shape of boundary( \(

cchange while Ðeld lines are being twisted by the Keplerian
disk rotation? ÏÏ In other words, the boundary between the
PP and FF regions evolves according to both the expansion
and ““ pushing ÏÏ from the FF region and the ““ hindrance ÏÏ of
the plasma pressure.

Although some details may di†er, we generally Ðnd that
magnetic Ðelds evolve in the following manner : (1) in the FF
region, Ðeld lines expand primarily toward the large radius
along an angle (from the z-axis) of h D 45¡È60¡ ; (2) in the
PP region, Ðeld lines expand predominantly vertically
(along the z-axis) with some slight radial expansion ; (3)
more twist causes further expansion along the z-axis but
subject to a break-down of the magnetostatic, equilibrium
assumption. We now discuss these features in detail.

4.1. Equilibrium Sequence with Increasing Twist
Figure 3 shows the evolution of magnetic Ðelds in the

poloidal plane as twist is added, with t \ 0, 1, 2, and 4 turns,
respectively. The Ðeld lines shown are evenly spaced in

with the outermost line having ( B 10~4 and thelog10 ((),
innermost line having ( B 0.5. Here we use the term
““ outer ÏÏ to refer to Ðeld lines in the PP region, which orig-
inate from the smallest radii and return back to disk at the
largest radii. The term ““ inner ÏÏ refers to Ðeld lines around

FIG. 2.ÈOverall physical picture with two di†erent regimes, separated
by (thick-dashed line). The region labeled PP is dominated by the( \ (

cplasma pressure with (the boundary at r \ 1). A tiny fraction(
c
º( º 0

of the total poloidal Ñux is in this region. The region labeled FF(\(
c
)

(force-free) is dominated by the magnetic pressure with (the O(
c
¹ ( ¹ 1

point). Most of the poloidal Ñux is contained in this region. The(1[ (
c
)

key question we are addressing is the response of the boundary to( \ (
cthe twisting of Ðeld lines by the Keplerian disk.

FIG. 3.ÈThe ““ evolution ÏÏ of the poloidal Ðeld lines with increasing
twist as solutions of eq. (13) in a ln rÈspherical coordinate for t \ 0, 1, 2,
and 4, respectively. (We present the results in a smaller R-z plane for
clarity.) The contours are displayed evenly in logarithmically spaced inter-
vals (10~4¹ ( ¹ 1). The outer Ðeld lines have expanded more strongly
along the z-axis (from zB 0.1 to 0.3) than in the radial direction (from
RB 0.1 to 0.15).

the O point in the FF region. Consequently, because the
Ðeld lines are twisted according to the Keplerian rotation
(largest rotation at the smallest radius), the outer Ðeld lines
show substantial ““ movement ÏÏ due to the added twist,
whereas Ðeld lines around the O point show little change.

The corresponding results for the poloidal current H(()
and the resultant twist *' are plotted in Figure 4. It is
interesting to note that H(() can be approximated by two
power laws of (, where H(() P ( when and Ñat-( ¹(

ctens somewhat for The twist shown in the lower( [ (
c
.

panel is derived by integrating along each Ðeld line. They
indeed follow the input proÐle closely owing to Keplerian
rotation.

4.2. Role of External Plasma Pressure in Collimation
The striking feature of the sequence of equilibria in

Figure 3 is the way the outer Ðeld lines expand. To best
understand this behavior, we separate the Ðeld lines into
two groups according to the ratio of These two(/(

c
.



10
5

10
4

10
3

10
2

10
1

10
0

Ψ
10

4

10
3

10
2

10
1

10
0

10
1

∆Φ
(Ψ

)

10
2

10
1

10
0

10
1

H
(Ψ

)
920 LI ET AL. Vol. 561

FIG. 4.ÈPoloidal current H(() (upper panel) and twist *'(() (lower
panel) as a function of ( for t \ 1, 2, 4, (bottom to top curves), respectively,
for the run shown in Fig. 3. The function H(() is P( for small (, then
Ñattens as ( increases. The twist agrees with the input Keplerian proÐle
nearly perfectly with indistinguishable di†erences.

groups have fundamentally di†erent expansion behavior,
which is illustrated in Figure 5, where the expansion of three
di†erent Ðeld lines (( \ 10~2, 10~3, 10~4) is shown for
t \ 0 (solid line), t \ 2 (dotted line), and t \ 4 (dashed line),
respectively.

Field line expansion in the FF region has been studied in
detail in many previous studies (see ° 1). The Lorentz force
is the only force available (i.e., the magnetic pressure gra-
dient is balanced by the tension force). As found, for
example, by LB94, the Ðeld lines expand to large radii along
an angle of h B 60¡ from the z-axis. This is consistent with
the left panel of Figure 5 (also Fig. 3, inner Ðeld lines).

The Ðeld line expansion in the PP region, however, is
fundamentally di†erent from the FF regime. This is because
the magnetic pressure becomes very small at large radii, and
eventually at some distance it becomes comparable to the
surrounding plasma pressure. At this location, further
expansion of the magnetic Ðelds is greatly hindered by the
plasma pressure. At the same time, increasing the twist acts
to increase the ratio of Consequently, these ÐeldBÕ/BR

.
lines are increasingly ““ pinched ÏÏ around the z-axis, and they
eventually expand along the z-axis in a ““ collimated ÏÏ
fashion, as shown by the middle and right panels of Figure 5
and the late time in Figure 3.

The middle panel of Figure 5 is particularly important. It
shows how the critical boundary at (see Fig. 2)( \(

cevolves with increasing twist. Note that its initial shape is
quasi-spherical, but a clear collimation along the z-axis has
developed by t \ 4.

A small amount of poloidal Ñux (with is in the( \ (
c
)

PP region and is twisted as well. One can ask whether these
outer Ðeld lines have contributed importantly to forming
the new shape of the boundary. To answer this( \(

c

FIG. 5.ÈThe ““movement ÏÏ of three particular poloidal Ðeld lines, ( \ 10~2 (left panel), 10~3 (middle panel), and 10~4 (right panel), as their twist increases
from t \ 0 (solid line), 2 (dotted line) to 4 (dashed line), using the results from Fig. 3. The plasma pressure is important for For Ðeld lines with( \ (

c
\ 10~3.

they are force-free and expand along an angle h D 60¡ radially (left panel). For Ðeld lines with their radial expansion is much ““ slower ÏÏ than( [ (
c
, ( ¹ (

c
,

their vertical expansion. This results in the collimation around the z-axis. Again, these solutions were obtained in a ln rÈspherical coordinate with rmax \ 1,
but we present the results in a smaller R-z plane for clarity.
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question, we have performed runs with a very small *'(()
for instead of the near-constant *'(() presented( \(

cin Figure 4. We Ðnd that as long as remains the*'((
c
)

same, its shape does not depend on the twist proÐle for
This means that the small amount of magnetic Ñux( \(

c
.

beyond the boundary does not change our results( \(
cnoticeably.

We have also performed runs with various magnitudes of
the plasma pressure. For the purely force-free case, we
conÐrm the results by LB94 that the Ðeld lines expand to
large radii along an angle of h B 60¡ from the z-axis and
only a small total twist (less than half a turn) can be added
before the Ðelds are packed against the outer boundary.
With a Ðnite pressure, however, the collimation e†ect is
always observed as long as the simulation region is large
enough or the pressure is large enough so that magnetic
Ðelds are not directly packed against the outer boundary.

Thus, the external plasma pressure, no matter how small
it may be, plays a fundamental role in causing the Ðeld lines
to collimate along the rotation axis. It essentially stops (or
greatly slows down) the radial expansion of the Ðeld lines
and in the meantime allows the buildup of the toroidal
component. This interpretation is also consistent with the
fact that Ðeld lines are closely packed at large radius
(stopped by plasma pressure) but are loosely spaced along
the z-axis (see the t \ 4 panel in Fig. 3).

The results shown in Figures 3 and 5 indicate that the
solution suggested by Lynden-Bell (1996) is indeed possible
(at least in the early expansion stage of the helix formation),
even though details are di†erent. Here we have shown
global self-consistent solutions where the Ðeld lines are
twisted according to the disk Keplerian rotation.

4.3. Distribution of Twist and Magnetic Energy
Figure 6 shows how its twist (*/) is distributed along this

Ðeld line as a function of z at t \ 4. We have plotted another
Ðeld line with a larger at t \ 4 as well. There is(2\ 10~2
an important di†erence between these two Ðeld lines in the
distribution of the twist *'((). For most of its twist(1,(º75%) is distributed on the ascending portion of the Ðeld
line and near the z-axis ; the rest is distributed while the Ðeld
line spirals down, back to the disk. For however, the(2,twist is distributed uniformly between ascending and
descending portions. To understand this di†erence, we can
write

K d/
dz
K
\
K RBÕ
R2B

z

K
\
K H(()
RL(/LR

K
.

Note that H(() is constant along a Ðeld line. Imagine a
small Ñux tube (( ] ( ] d() originating from the inner
region of the disk. Since the Ðeld line remains at small R for
the ascending section in the presence of plasma pressure,

This is the reason why d//dz following a ÑuxB
z
R2D 2(.

tube is roughly constant for the ascending part of the Ñux
tube. For the Ñux tube, however, its expansion at large(1radius (the descending portion) is strongly constrained by
the plasma pressure so that the cross-sectional area for the
descending Ñux tube is much smaller than it would have
been without the plasma pressure. Consequently, its B

zcomponent on the descending portion of the ( \ (1surface varies more slowly than R~2 so that the rate o d//
dz o is smaller. Overall, the twist is then nonuniformly dis-
tributed on a Ñux line. (See Parker 1979). Thus, the presence

FIG. 6.ÈDistribution of cumulative twist along two Ðeld lines as a
function of height z. The slope of the curves o d//dz o gives the pitch of the
Ðeld line (twist per unit height). For ( \ 10~2 (dashed line), its pitch is
equally distributed between ascending and descending portions since it is
force-free. For ( \ 3 ] 10~5 (solid line), its twist distribution is not
uniform, with most of its total twist being distributed on the ascending
portion of the Ðeld line.

of plasma pressure leads to a strong collimation and a con-
centration of the twist to the collimated region.

The total injected toroidal Ñux by the disk rotationFÕinto the system can be evaluated as

FÕ(t) \
P P

BÕ dRdz\
P
0

1
d(*'((, t) . (20)

We Ðnd that the ratio of to the initial total poloidal Ñux,FÕincreases linearly with time asF
z
\ /0Ro dR2nRB

z
\ 2n,

expected by equation (19), reaching a maximum of D4%
when t \ 4. So the total injected toroidal Ñux is still a small
fraction of the total initial poloidal Ñux. This information is
useful for nonaxisymmetric stability considerations for
future studies.

Figure 7 shows the spatial distribution of magnetic
energy density and how it evolves with added twist. The
quantity (i.e., a scaled magnetic energylog10 (B2/P

c
] 1)

density) is shown for t \ 0 (top left) and t \ 4 (top right),
where and It is clear that essentiallyB2\ B

p
2] BÕ2 P

c
\ 0.1.

all the magnetic energy is enclosed by the plasma pressure.
The expansion results in a clear collimation of magnetic
energy along the z-axis. The two bottom panels show, at
t \ 4, the poloidal (lower left) and thelog10 (B

p
2/P

c
] 1)

toroidal (lower right) components, respec-log10 (BÕ2/Pc
] 1)

tively. Note the dramatic increase of magnetic energy
(mostly poloidal component) along the z-axis.
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FIG. 7.ÈMagnetic pressure distribution at t \ 0 (top left panel) and
t \ 4 (top right panel). The quantity plotted is wherelog10 (B2/P

c
] 1),

is the total magnetic pressure, is the poloidalB2\ B
p
2] BÕ2 B

p
2\B

R
2 ]B

z
2

component, and Lower left and right panels are forP
c
\ 0.1. log10 (B

p
2/P

cand respectively, at t \ 4. The dark blue color] 1) log10 (BÕ2/Pc
] 1),

represents the region with i.e., The addedlog10 (B2/P
c
] 1)B 0, B2> P

c
.

twist causes the Ðelds to expand along the z-axis, with increased poloidal
and toroidal magnetic pressures. Again, these solutions were obtained in a
ln rÈspherical coordinate with but we present the results in armax \ 1,
smaller R-z plane for clarity.

4.4. L imitation on Increase of Twist
We Ðnd that it is not possible to increase the twist beyond

what is shown in Figure 3. When more twist is added, the
system evolves from a conÐguration with all Ðeld lines being
tied to the disk to a new topology with some poloidal Ðeld
lines close on themselves instead of connecting to the disk
(i.e., forming an isolated ““ island ÏÏ of poloidal Ñuxes, or
““ plasmoid ÏÏ). At this point, our method used to solve equa-
tion (13) becomes unstable. The plasmoid formation is
associated with the Ðeld lines that are in the FF regime

The transition to the plasmoid formation is(([(
c
).

sudden, giving a sense of eruptive behavior of the solution.
However, as discussed below, this numerical behavior is
associated with instability of the method but not necessarily
related to instability of the MHD equations.

Such eruptive behavior has been the subject of intense
research in the solar Ñare community (Aly 1984, 1991, 1995 ;
Sturrock et al. 1995). The formation of a plasmoid from a
single arcade (Inhester, Birn, & Hesse 1992) is a loss-of-
equilibrium bifurcation related to tearing instability of the

current sheet which forms at the center of the arcade when it
is sheared strongly (Finn & Guzdar 1993). In addition, it
has been shown that plasmoid formation can occur directly
as a consequence of linear instability when multiple arcades
exist (Mikic et al. 1988 ; Biskamp & Welter 1989 ; Finn,
Guzdar, & Chen 1992).

This behavior of the solutions with increasing twist can
be traced to a mathematical nature of the elliptical equation
we are solving (e.g., eqs. [11] and [13]). We can write this
equation in a pseudoÈtime-dependent form, e.g.,

L(
Lt

\ *|( ] 1
2

dH2
d(

[ AR2( exp [[((/(
c
)2] , (21)

where a steady state is achieved progressively when L(/
Lt ] 0. Here is a positive constant. The com-A\ 8nP

c
/(

c
2

putational domain can then be divided into three parts
depending on the ratio of Region I : large R. The(/(

c
.

pressure term [R2 o dP/d( o dominates. Since it is negative,
it drives ( to 0 exponentially for small ( (i.e., d(/dt P

with The solution in this region is quite[C1(, C1[ 0).
stable. Region II : small R and small z (close to the disk), i.e.,
the FF region with a negligible pressure term. Region III :
small R but large z (along the rotation axis), where all three
terms contribute. The eruptive behavior we found could
occur in both regions II and III, whenever the poloidal
current term dH2/d( exceeds a certain critical value. With a
large current, magnetic Ðelds tend to expand enormously
and Ðll up the whole computational domain.

An important question is whether this eruptive behavior
actually occurs in a system described with the full set of
dynamical equations. Recent axisymmetric simulations
using the full set of MHD equations by Ustyugova et al.
(2000) and Goodson et al. (1999) indicate that Ðeld lines can
reconnect and become open. Clearly, the rate of reconnec-
tion is enhanced by the artiÐcially large resistivity in such
codes ; the exact role of resistivity in allowing reconnection
when it might not otherwise occur is not completely clear.
In Ustyugova et al. (2000), two regimes have been found
after approximately tens of rotation periods of the inner
disk : a hydromagnetic outÑow from the outer part of the
disk and a Poynting outÑow, which has negligible mass Ñux
but is dominated by the electromagnetic Ðeld along the
rotation axis.

5. DISCUSSIONS AND CONCLUSIONS

We have shown that a static plasma pressure is funda-
mental in shaping the overall magnetic equilibrium, despite
the fact that the plasma pressure is exceedingly small (the
maximum magnetic pressure over the plasma pressure is
1011 in this study). This is essentially di†erent from the pure
force-free models (e.g., LB94 ; see, however, Lynden-Bell
1996). This di†erence comes from the fact that the Ðeld lines
that are being twisted the most expand the furthest, so they
are most a†ected by the plasma pressure. This is opposite to
the behavior in the solar Ñare models, where most of the
shear is concentrated around the O point. The least amount
of shear is applied near the O point in the accretion disk
case. In regions where the plasma pressure is negligible, the
physics of expansion is dominated by the force-free condi-
tion (J Â B \ 0). Their expansion is predominantly toward
larger radii along an angle of h D 60¡ from the z-axis
(LB94). But for Ðeld lines a†ected by the plasma pressure,
their radial expansion (away from the z-axis) is slowed or



No. 2, 2001 MAGNETIC HELIX FORMATION 923

stopped by this pressure. The twisting of those Ðeld lines
causes them to expand much more strongly along the z-axis
owing to the buildup of the toroidal Ðeld component BÕ.The buildup of is nonuniform along those Ðeld lines,BÕwith more twist distributed on the ascending portion of the
Ðeld lines. This is, again, a direct result of external plasma
pressure.

We have obtained magnetostatic equilibria up to a
maximum of four turns of the innermost Ðeld line. For
larger twist the solutions exhibit a change of topology and
our method breaks down. The larger values of twist should
be treatable by including the inertia term in the fullod¿/dt
set of dynamic MHD equations.

An important question is the stability/instability of these
axisymmetric equilibria. Instabilities in three dimensions
involving Ñux conversion between toroidal and poloidal
components is probably unavoidable and this e†ect will be
important astrophysically : this is because the initial poloi-
dal Ñux on the disk is probably too small to be responsible

for the observed total magnetic Ñux in many astrophysical
systems (Colgate & Li 2000). The Ñux multiplication by the
disk rotation/twisting and subsequent Ñux conversion
could, however, generate enough Ñux.
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